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ABSTRACT

The combined mechanical stresses on aircrewmen have

become increasingly acute as technological developments

extend the flight envelopes of our high performance

aircraft. Limitations on the design of this type of

aircraft are frequently dictated by human tolerance. The

concept of an analytical model to evaluate the biomechanical

response of the human intervertebral joint, under the

influence of long term axial compressive loading, is

important in assessing the load carrying capability of

normal and diseased vertebral segments.

It has been experimentally demonstrated that healthy

intervertebral joints are composed of materials which

exhibit creep characteristics. This investigation is

significant because it presents a study of the time

dependant behavior involved. An axisymmetric finite element

mod-el is employed which incorporates a linear viscoelastic

constitutive relation for the intervertebral disc.

Viscoelastic material constants are found by matching

one-dimensional experimental data with the two-dimensional

model. Results are presented depicting displacement

profiles and stress redistributions occurring as a

consequence of the inclusion of these viscoelastic

parameters which, for the first time, simulate the actual

human response to high compressive loads over a specific

*time span.

ix



CHAPTER I

INTRODUCTION

1.1 Background

An understanding of the mechanics of the intervertebral

joint is of interest to researchers in many areas; ranging

from problems encountered during pilot ejections to those

associated with the selection of suitable disc replacement

materials. At the present time, however, even some of the

salient features of the joint's mechanical behavior are

poorly understood . This is a consequence of the

difficulties in determining in-vivo mechanical properties

and constructing a realistic analytical model. (Belytschko

et.al.(3))

Research into the material properties of vertebral bone

has been performed by Galante et.al.(1O), Rockoff

et.al.(20), and McElhaney (17). The use of the finite

tI



element method to successfully model the vertebral body has

been demonstrated by Balasulramanian et.al.(2) and Hakim

et.al.(ii).

Brown et.al.(6), Nachemson (18), Hirsh (14), and

Rolander (2i) carried out experiments to determine the

static force deflection properties of the intervertebral

disc subjected to axial loading. Belytschko et.al.(4) and

Spilker (23) employed an axisymmetric finite element model

to study the time independant behavior of the intervertebral

disc.

Meanwhile, Kazarian (15) reported creep characteristics

for intervertebral joints subjected to constant axial loads,

and Kazarian et.al.(16) illustrated that the response could

be adequately modelled with a three-parameter viscoelastic

solid. Using a one-dimensional classical approach, Burns

(7) derived the material constants for these three-parameter

solids.

1.2 Purpose

As a natural extension of the work which has been done

to date, this thesis was undertaken to include in the model

of the intervertebral joint, not only the geometric

irregularities and material inhomogeneity, but the

viscoelastic creep response previously noted. The purpose

in doing so was to determine the applicability of using the

one-dimensional parameters derived by Kazarian et.al.(16)
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and Burns (7) in a three-dimensional model. Secondly, to

observe the influence of a creeping disc on the displacement

profiles and stress redistributions within the vertebral

body.

1.3 Anatomy (4)

The human vertebral column is a segmented structure of

24 mobile vertebrae separated by intervertebral discs. Each

vertebra consists of a body and a set of posterior elements.

The center of the vertebral body is composed of soft

trabecular bone, and is encased circumferentially by a thin

shell of relatively hard cortical bone. The upper and lower

surfaces of the body, which are also thin plates of cortical

bone, constitute the bony end-plates.

The intervertebral disc is a rather complex entity

containing both solid and fluid material. Exterior to the

disc proper are two ligaments: the anterior longitudinal

ligament and the posterior longitudinal ligament. The

posterior ligament is attached dorsally, while the anterior

ligament is attached ventrally, to the disc.



The combination of two vertebral bodies with their

Intermediate ligaments and disc is what constitutes the

intervertebral joint. During axial loading the disc appears

to be the primary load-carrying structure between vertebrae

(14), (18),(21), and thus any ligament restraint is removed

in order to focus entirely upon the disc interaction. (See

Fig (i.1) and (1.2))

4



A- Trabecular Bone

B-- CortiiRl Pon~e

C-- Disc B B

D-- Bony End-plate

Figure 1.1 Truncated Intervertebral Joint
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1.4 General Approach and Assumptions

Initially, analytical techniques were investigated as

an approach to modelling the joint. This investigation

revealed the joint to be of such complexity that classical

methods could not be applied. The finite element method,

however, was found to be capable of handling the complexity,

and therefore was pursued.

An existing plane-stress, plane-strain finite element

program written by Hinnerichs (12) was modified to account

for material viscoelasticity and inhomogeneity. Since the

intervertebral joint was idealized as a body of revolution,

the program was further altered to accommodate axisymmetric

structures. These modifications were validated before the

program was applied to the problem at hand.

In addition to the assumption of axisymmetry, it was

also assumed that the intervertebral joint was symmetric

with respect to the centerline of the disc. It was further

assumed that the observed creep was a quasi-static

phenomenon; in which case, the inertia of the structure was

neglected. Kazarian (15) showed viscoelastic creep of the

joint to be dependant on the presence of the disc. That is,

the vertebral body alone did not exhibit creep when

subjected to a constant axial load. Therefore, it was

assumed that the trabecular and compacted bone of the

vertebral body were linear elastic materials, whereas the

disc was idealized as a homogeneous isotropic linear

7



viscoelastic substance. ln other words, all of the

viscoelasticity of the joint was attributed to the disc.

Based on these assumptions, a TIO-TII spinal segment

(test t.D. 65 Kazarian et.al.(16)) was discretized. and

studied. (See Fig 1.2 for their relative location in the

spine)

8



CHAPTER 2

LINEAR VISCOELASTIC THEORY

The classical theory of elasticity deals with the

mechanical properties of elastic solids, for which,

according to Hooke's law, stress is always directly

proportional to strain in small deformations, but

independant of strain rate Saada(22). The classical theory

of hydrodynamics deals with properties of viscous fluids,

for which, according to Newton's law, stress is always

directly proportional to the rate of strain, but iodependant

of the strain itself.

The classical theories of elasticity and hydrodynamics

are idealizations, and many materials cannot be adequately

modelled by one or the other of them. For instance, a

material which is not quite solid does not maintain a

constant deformation under constant stress, but slowly

deforms with time. When such a material is constrained at

constant deformation, the stress required to hold it

I . . . . -- .. .. . II I r I . . . I i . . .. . . i " . .. .. ... ..



gradually diminishes or relaxes. A material which is not

quite liquid may, while flowing under constant stress, store

some of the energy input, instead of dissipating it. It may

recover all of its deformation when the stress is removed.

Materials which exhibit such behavior are identified as

viscoelastic and can be adequately modelled by combining the

classical theories of elasticity and hydrodynamics.

2.1 Classical Viscoelastic Theory

An extensive study of the viscoelastic theory has been

performed by a number of researchers. Principal results are

summarized in texts by Bland(5), Christensen(8), and

Flugge(9). A brief discussion of the theory is presented

here as a background for the reader.

2.1.1 One-Dimensional Theory (9)

The building blocks or discrete elements of linear

viscoelastic theory are the spring and the dashpot. Various

combinations of these elements serve to model the many

different types of viscoelastic materials. To understand

the combinations of these elements one must investigate

their individual characteristics.

Consider a helical spring which obeys Hooke's law. Its

constitutive equation may be written as

10



$"= FE6 (2-i)

where Cr is the stress, g the strain, and E the Modulus of

elasticity. Similarly for the dashpot

(2-2)

where p is the dashpot constant and () denotes time

differentiation.

Perhaps the simplest combination of these elements is

the Maxwell fluid (Fig 2.1) in which the elements are placed

in series.

EY

Figure (2.1)

To derive the constitutive equation for this model, the

equations of the two elements are written

("= E& (2-3)

and

• (2-4)

It is required that the total strain be the combination of

the two elemental strains,

iiJ



- 4+ E (2-5)

Eqs 2-3 and 2-5 are differentiated with respect to time and

substitutions are made for and f . Thus the

constitutive equation is derived

+J

(2-6)E
Written in standard form the equation is

1 (2-7)

where (in this case) an = and

Another combination of these elements is the Kelvin

solid (Fig. 2.2) in which the elements are placed parallel

to one another. -

mE

a-At

Figure (2.2)

The derivation of the constitutive equation for the Kelvin

solid proceeds in a manner similar to the Maxwell fluid. In

this case it is required that the total stress be equal to

the combination of the two stresses

+- C0 (2-8)

The constitutive equation is found by substituting in for 6-

12



V

and a,

(1-=Ee + 1i(2-9)

which is written in standard form

CJ lot-- +,$I, (2-10)

where (in this case) .- E and t=v.

More complicated models are built by systematically

combining the discrete elements with Kelvin solids and/or

Maxwell fluids. The constitutive equation for any such

model has the form

P -- + lei 4-d1g6 1 (2-11)

Or

(2-12)

If the differential operators are defined

k
Pz~JL (2-13)

then eq 2-12 can be written in the form

- (2-14)

which resembles Hooke's law.

13



The solution of Eq 2-14 for a- or , as a function of

time is not a trivial problem. Perhaps the most universally

applied solution process is to subject the equation to the

Laplace transformation which results in an algebraic

relation between the transforms - and ? of stress and

strain

kS K.o r

where .4 is the transform variable.

If the polynomial operators are defined

J,-d/(2-16)

then Eq 2-15 becomes

~ 2 ~r ~(2-17)

Again, note the similarity to Hooke's law.

2.1.2 Three-Dimensional Theory (9)

To this point in the presentation, consideration has

been given only to uniaxial states of stress and strain and

an expression for the constitutive equation of a one-

dimensional linear viscoelastic material has been derived.

Next, a multiaxial state of stress is considered and a

general constitutive equation for a three-dimensional

1.4



viscoelastic material is found. In order to do this, the

elastic constitutive equations must first be presented.

Ln elasticity, the state of stress and strain in a

material can be described with second-order cartesian

tensors G7b and q (22). If the material is isotropic, then

only two material constants are required to express the

constitutive equation. These constants are Young's modulus

and Poisson's ratio. The constitutive equation may be

expressed

iL =#LAI (2-18)
E

where [A] is dependant on Poisson's ratio .

Another way of expressing this relationship is by

separating the stress tensor into its spherical and

deviatoric components and writing

3 = 3Ke (2-19)

= 2(2-20)

where K and G are the bulk and shear moduli , s and e the

spherical stress and strain, s and e the deviatoric stress

and strain respectively. If an elastic material were

subjected to a hydrostatic state of stress then there would

be a volume change but no change in shape. In other words,

the spherical components (Eq 2-19) would be affected, but

15



the deviatoric components (Eq 2-20) would not.

Similarly, if a viscoelastic material is isotropic, a

hydrostatic stress must produce a volume change and no

distortion. The quantities s and e must therefore be

connected by a relation such as eq 2-14, and should be

written

or

I, ff

Ps =(2e (2-22)

Similarly for the shear components

Yp~ , le (2-23)
Cit

Or

/ IrS e, (2-24)

& ' #

The four operators , Q, P, Q, which describe the

viscoelastic behavior of the material are entirely

independant of one another.

The elastic solid is a limiting case of the

viscoelastic material. It is seen that in this case the

four operators are simply mulitplicative constants

16



Pq=3K P 1 Q 2G (2-25)

)F

In an elastic solid under constant load, nothing

depends on time. In a viscoelastic material, all stresses,

strains, and displacements which are material dependant are

also time dependant. If the Laplace transformation is

applied to eqs 2-22 and 2-24 they become

-Z (2-26)

and

GS (2-27)

These are algebraic relations which become identical

with their elastic counterparts (Eqs 2-19 and 2-20) if the

following substitutions are made:

3k: ~ - ~ -(2-28)3K~ d 2Er G/

This leads to a most general correspondence principle:

(5) If the solution of an elastic problem is known, the

Laplace transformation of the solution to the corresponding

viscoelastic problem may be found by replacing the elastic

constants K and G by quotients of polynomial operators and

the actual loads by their Laplace transforms.

In most cases the solutions of elastic problems are not

17



written in terms of K and G, but rather in terms of E and

. The elastic relations between E, ' , K and G are (22)

S- qlcY, G -- - (2-29)

If the corresponding viscoelastic polynomial operators

for K and G are substituted into Eq 2-29, the following

expressions are obtained:

E -3 .(2-30)

and

e (2-31)

This correspondence principle is of sweeping

generality, but it does have its limitations. It requires

that one has closed form solutions to the elastic problem,

which, for nonhomogeneous structures of complicated

geometry, are unattainable.

The viscoelastic creep of the human intervertebral

joint is such a problem. Thus, the classical viscoelastic

correspondence principle must be abandoned as a solution

technique and another method must be tried, namely the

finite element method.

18
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2.2 The Finite Element Method

Numerous authors have presented works which detail the

solution of linear and nonlinear elastic problems by the

finite element method. Among them are Bathe et.al.(3),

Oden(19), and Zienkiewicz(25). Appendix A gives a brief

overview of its application to an elastic, axi-symmetric

structure under initial strain. The solution of the

viscoelastic problem by this technique is based on the

assumption that the material of the structure can be

adequately modelled by a finite number of Kelvin solids or

Maxwell fluids coupled with an elastic spring [Adey

et.al.(1), White(24), Zienkiewicz et.al.(26)]. This

assumption is satisfied as long as the coefficient of the

zeroth-order derivative of eqns 2-12, 2-21, or 2-23 is

nonzero.

2.2.1 One-Dimensional Problems (26)

For simplicity of presentation, it is assumed that the

structure in question is one-dimensional and can be modelled

as a three-parameter solid, ie. One Kelvin solid coupled

with an elastic spring. The instantaneous elastic

deformation is dependant only on the spring and therefore

can be separated from the creep deformation and solved by

the finite element method. The Kelvin solid (Fig 2.2) whose

constitutive relationship is given by eqn 2-9, is next

19
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ronsidered. This equation may be rewritten

ee (2-32)

which shows that the creep strain rate is a function of

current stress level and total accumulated creep strain.

This expression is integrated by Euler's time derivative

method EHornbeck(13)] to yield

~e (2-33)

The quantity AErepresents the change in strain due to

creep at the end of a small time interval • This can be

considered as an initial strain imposed. The elastic

problem is solved again for a new stress system. Time is

incremented and the whole process is repeated in this

incremental fashion until a maximum time is reached. The

foregoing algorithm is more completely discussed in Appendix

A.

In general, for any viscoelastic material model, eqn

2-14 must be employed, which can be rewritten

P
C.. - (2-34)

Advantage is taken of the similarity of this equation with

Hooke's law. That is, for uniaxial conditions, the quantity

41F of a simple elastic case is replaced by the operator

for the viscoelastic case.

20



2.2.2 Three-Dimensional Problems (26)

To generalize this technique to the multiaxial case an

appeal is made to the multiaxial elastic relationships 2-19

and 2-20 as well as the similar viscoelastic relationships

2-22 and 2-24.

From these relations it can be seen that 1/_31 and

1/2G of the simple elastic case are replaced by the

operators P7Q and for the viscoelastic case.

Again for simplicity of presentation, it is assumed

that the material is elastic in volume change and a three

parameter solid in distortion. With these assumptions, the

operators become

P//0' 1/3 K (2-35)

and

I12 =P' 4 i + 4/( 1 *+,D) (2-36)

where

D= 4/ (2-37)

As In the one-dimensional case it is necessary to

separate the elastic terms from the viscoelastic creep

terms. This is done simply by noting which terms are time

21



dependant and which are not. The volume change is assumed

to be all elastic so it may easily be written

1/3K = ( 1/3K)e + (o)r (2-38)

where the subscripts "e" and "c" denote elastic and creep
respectively. The elastic part is given by

(j/3~e= /K (2-39)

and the creep part is given by

(413 K) r = 0 (2-40)

From the distortion equation the parts are separated

similarly. The elastic part is

(126)e (2-41)

and the creep part is

(112+) = ) (2-42)

Now, since it is desired that these relations be

applied to the finite element method, the values V and

Elastic modulus must be solved for. In order to do this,

the elastic parts are grouped together

(113-,L t j 0/Z)e (2-43)

22



Elastic modulus and s are found using eqn 2-29.

~K (2-44)GK$+ I

and

( )Ko r (2-45)

the creep parts are grouped together

0/ ~ Cl/z&)aj 4-(114D) (2-46)

and solved for

11 4 (IJI4, + D) (2-47)

In order to use these quantities in the finite element

method eqn 2-18 must be returned to. For the elastic part

the values of 9. and Eare substituted and the instantaneous

elastic deformation is solved using the finite element

method. For the creep part, the values for - and Eare

substituted to obtain

~2 I2~Y D) AJjc (2-48)

which is rewritten

~1J~e3 EA] (2-49)

This equation is integrated by Euler's method to yield

23



fA 4 e-3EA] Cc (2-50)

Again, as in the uniaxial case, the & becomes an initial

strain imposed and the finite element method proceeds

similarly. (If the reader is specifically interested in the

use of Eq 2-50 within the finite element formulation,

Appendix A may be consulted.)
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CHAPTER 3

PROGRAM VALIDATION

As was mentioned in the introduction, numerous changes

were made to an existing finite element program. The first

step following these changes was to test the program against

some known exact viscoelastic solutions.

3.1 One-Dimensional Axial Rod

The first test was conducted to demonstrate the

validity of the program's application to a simple one-

dimensional problem. A homogeneous circular rod having

three-parameter viscoelasticity was subjected to a constant

axial load. Fig. (3.1) shows the rod and the finite element

mesh used to model it, while a comparison of the

displacements with the exact solution is presented in Fig.

(3.2). The depicted solution was obtained by using an

25



initial timestep of ten seconds which varied to a value of

,47 seconds at the conclusion of the problem. The

approximate values were within i% of the exact solution.

26
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3.2 Thick-Walled Cylinder Subjected to Internal Pressure

Whereas the first example tested the program for

accuracy in handling a very simple structure under an axial

load, the second example was designed to test the method on

a relatively complex problem under radial loading. The

thick-walled cylinder problem was chosen, because an exact

solution could be derived using the general correspondence

principle and it also provided the desired complexity. Fig.

(3.4) shows the geometry and boundary conditions of the

problem.

3.2.1 Exact Solution

In order to apply the general correspondence principle,

the elastic solution was needed. The plane-strain

assumption was made which led to the following elastic

solution for the problem:

L4 + (3-2)

292

hIt vas noted that dr and MO are independant of the

problem these stresses should be time invariant. The



displacement U. and the other stress - , however, are

material dependant and therefore should be time dependant in

the viscoelastic problem. These quantities were found by

applying the correspondence principle to eqs 3-I and 3-2

'I (3-3)A +

%I T- . L 2- ''  '  -f ( 3-4)

These relations were next applied to specific

materials. It was postulated that the volume change was

purely elastic, while the distortion behaved like a

three-parameter solid.

0v

Figure (3.3)

This assumption led to the following polynomial

operators:

which were substituted into eqs 3-3 and 3-4.

After some lengthy arithmetic and transform inversions

the following expressions were found:
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(--

(3-6)

+ -

and

where

S6K +4 6 (3-8)6K +4 ,,

Appendix B contains a full derivation of these equations.

3.2.2 Finite Element Solution

In order to apply the finite element method, a slice

was taken from the cylinder and discretized as shown in Fig

(3.4). The material constants were found using the method

detailed in section 2.2.2 and the problem was solved. The

finite element solution was obtained using an initial

timestep of 0.01 seconds which increased to a value of 0.1

seconds at the conclusion of the problem. Figs (3.5)

through (3.9) present a comparison of the finite element

results with the exact solutions. In each instance the

variations from the exact were virtually nil. The

worst-case variation was less than 1%
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3.3 Summary

Based on the good fits obtained for both of the test

problems, it was concluded that the finite element program

was indeed valid, and could be applied to the intervertebral

joint.
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CHAPTER 4

APPLICATION TO THE INTERVERTEBRAL JOINT

In the experiments performed by Kazarian et.al. (16),

several intervertebral joint specimens were studied. These

specimens were made by cutting the vertebral bodies parallel

to the lines of demarcation between the discs and the bony

end-plates at levels of maximum vertebral waisting. The

specimens were then measured and placed in the test

apparatus. Each was subjected to a dead weight load of 18.0

Kp (Kiloponds) for a period of time and the deflection of

the top edge was recorded.

For the purpose of this finite element study, specimen

number 65 (a TIO-Tli segment) was used. So that comparisons

with the experimental data could be made, the same 18.0 Kp

load was applied to the finite element model as was applied

to the test specimen.
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4.i Mesh Size and Material Constant Determination

In order to apply the finite element method to the

intervertebral joint, it had to be discretized in such a way

as to maximize the accuracy of the solution while minimizing

the computer resources expended. To accomplish this, it was

necessary to systematically reduce the mesh sizes until the

stresses within the joint were observed to vary smoothly

from one region to another. Additionally, since a major

interest of this study was to observe the bone-disc

interface, the bony end-plate region was used as a focal

point during the mesh size reduction process. When the

stresses within the bony end-plate were observed to vary by

15% from those of the previous mesh size, the model was

considered to be refined enough to capture the trends of

stress redistribution with time. Figure 4.1 shows the

initial mesh used in the study.

Material properties for the trabecular and cortical

bone were taken to be: E- 750Kp/Sqcm %) = 0.25 and E-

16OOOKp/Sqcm -0- 0.25, respectively (4). Assignment of the

viscoelastic material constants to the disc was done based

on the properties derived in Ref. (16) i.e. E- 167.2Kp/Sqcm,

- 64.6Kp/Sqcm, and 0- l06000Kp-Sec/Sqcm. (See Fig 4.2

Ref. (16) fit to the experimental data) A problem in

assigning these constants was immediately encountered due to

the assumptions made in their derivation. Those assumptions

being that the joint was a homogeneous one-dimensional rod.
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Since the objective of this thesis was to represent the

joint as a nonhomogeneous, axisymmetric structure, it was

necessary to deviate from these constants.

The problem of inhomogeneity was approached first. If

one has two elastic rods loaded as shown in Fig. 4.3, the

first being made of a single material, while the other made

of two materials, it is readily shown that the displacement

ut A - I (E4-1)"A

for the homogeneous rod and

U )C ___ + R 42

A E. A(E)
for the nonhomogeneous rod. The value of E as given in ref.

(16) was derived, in effect, by loading the specimen,

observing the instantaneous displacement u(A), and then

applying eqn 4-1.

E=.PA (4-3)

This approach was extended to the nonhomogeneous rod by

equating the right-hand sides of eqs 4-1 and 4-2.

_ U- 4 + (44)
A E AF2. AE,

Here, all the values were known with the exception of E,

which was found by simple algebra to be
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EEE E (4-5)

I(Ea-E)aE

Since the vertebral body was assumed to be linearly

elastic, the constants 10and for the disc were simply

proportioned by e/I to obtain

~ 23.34 Kp/Sqcm

S-400,000 Kp-Sec/Sqcm

Poisson's ratio for the disc was taken to be 0.48 (4).

These material constants were assigned, and a computer

run was made. The instantaneous displacement of the top

edge of the joint at the line of rotational symmetry was

observed to be 0.003 cm, which varied significantly from the

experimental value of 0.014 cm. Furthermore, as time

proceeded, the displacement remained nearly constant. At

the end of 167 minutes simulation time, a value of only

0.004 cm was reached, while the experimental deflection was

0.023 cm at that time. These large variations from the

experimentally observed data were concluded to be a

consequence of having determined E, T., and s, for the

disc based on the assumption that the joint was a

one-dimensional rod.

Before the mesh size reduction could proceed, the

values of E, I*, and 1 had to be found which would more

closely match the experimental results. It was noted that

the instantaneous displacement was dependant on the value of

E but independant of 10and s, The first step,

therefore, was to vary the E value until the model matched
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the experimental displacement at t=0. This was done quite

readily using a trial and error method. The value of E

which best represented the instantaneous deflection, was

found to be 7.5 Kp/Sqcm. Fig 4.4 shows the displacement vs

time plot based on this E value.

The values of 1- and I were found by a similar

method. It was noted that the value controlled the

slope of the displacement vs time curve, while the 1. value

had more influence on the displacement limit approached as

time increased. Fig 4.5 and 4.6 show some intermediate

results obtained by varying to and I!. The values for 1o

and ! which best represented the data were found to be

-0.015 Kp/Sqcm and 1 =28,150 Kp-Sec/Sqcm.

With these material constants, the mesh size reduction

process was continued. Figures 4.7 and 4.8 show some

intermediate mesh sizes. Whereas, at each reduction, the

instantaneous deflections varied little from those obtained

with the course mesh, those observed as time progressed

began to deviate from the experimental data. These

observations revealed that the value of E which was derived

from the course mesh model was good, but the values of I'

and it needed more refinement. Therefore, as the mesh size

was further reduced, minor adjustments to the 10 and 1,

values were made. This process continued until the 1- and

s, values showed less model dependance, and the stresses

within the joint varied smoothly from one region to another.

Furthermore, the stresses in the bony end-plate were

43



observed to vary by less than 15% from those of the previous

mesh size. Figure 4.9 presents the final mesh size, while

Fig 4.10 shows the displacement vs time plot based on the

final values of $0 =.01 Kp/Sqcm and -27000 Kp-Sec/Sqcm.

4.2 Displacement Profiles

In order to visualize the displacements throughout the

joint as time increases, plots of the deformed shape were

made at convenient intervals. Figure 4.1ia presents the

undeformed shape, while Figs 4.l1b,c,d show the shapes at

time=0.0, 80.0, and 160.0 minutes respectively. In each of

the figures, the deformations were magnified by a factor of

2 so that they could be more readily observed.

It was noted that because of the large disparity

between the elastic moduli of the vertebral body. and the

disc, the greatest instantaneous deformation presented

itself in the disc. As time progressed, this condition

became even more pronounced in support of the assumption

that all viscoelastic effects were contributed to the disc.

Note that the disc appears to be "squeezed" outwardly

in the radial direction. As it moves outward in time, one

would expect that there would be an accompanying increase in

shear stress along the disc-bone interface. Additionally,

since the disc is constrained from moving radially at the

line of rotational symmetry, one would expect the radial

component of direct stress to show an increase in tension as
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the disc displaces outwardly. This outward movement also

appears to cause a "twisting" of the vertebral body. That

is, the wall of the cortical bone on the exterior of the

body is being displaced outwardly at the disc-bone

interface, while the top edge is displacing downward and

inward. One would expect this "twisting" to cause the

trabecular region to be placed in a state of compression

that would increase with time.

In the following section, the actual stress

redistributions are presented and appear for the most part

to follow the stresses one would expect from intuitive

arguments.

4.3 Stress Redistributions

The variation of shear stress through the joint was of

interest in determining the final mesh size. Vertical

profiles of shear were taken at two radii: r-0.625 cm and

r-1-5 cm, and plotted to observe the variations. These

profiles are presented for t-0.0 in Figures 4.12 and 4.13.

It was noted that the bony end-plate served as a boundary in

which the shear in the two relatively soft adjacent regions

underwent a sign change.

In addition to these vertical profiles, horizontal

profiles of all the stress components were taken at three

different joint levels: within the disc, the bony end-plate,

and the trabecular bone region just superior to the bony
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end-pLate. Figures 4.14 through 4.25 present these profiles

for times varying from 0.0 to 160.0 minutes. From these

stress profiles, a number of observations were made.

Figure 4.14 reveals that the radial component of stress

in the disc increased with time and at a radius of 2.2 cm,

the increase after 160.0 minutes was approximately 30%.

This increase was also noted in the circumferential or hoop

stress component (Fig 4.16). The axial stress component

(Fig 4.15) was seen to increase by about 7% overall during

the 160.0 minute interval. The shear stress (Fig 4.17)

showed an interesting trend. For radial values from 0.0 to

about 1.75 cm, the shear increased with time, while for

greater radial values, it tended to decrease or relax. This

tread to relax was not predicted by intuitive arguments, but

is concluded to be a result of the disc-bone interface

geometry. That is, because the interface is a curved

surface rather than a flat one, intuition fails to

accurately predict the stress redistribution.

In the bony end-plate, where the greatest interest of

this study was centered, the first observation one makes is

that in each case, the stress components are of a much

larger magnitude than for any other joint region. This

points to the fact that the disc-bone interface is an area

which serves an important role in the overall integrity of

the human intervertebral joint. Furthermore, as time

progressed, the stresses underwent some significant changes,

which reveal the region to be very active during creep. The
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radial component (Fig 4.18) increased by about 8% overall

during the simulation. In the shear stress component (Fig

4.21) there was an overall tendancy to increase in absolute

value. This trend was most pronounced at r-2.0 cm where the

increase was about 20%. The hoop stress (Fig 4.20)

increased for radial values from 0.0 to 1.5 cm and relaxed

for radial values greater than 1.5 cm. The stress reduction

was most pronounced at a radius of 2.2 cm where a 9% change

was observed. Figure 4.19, which depicts the axial stress

component, shows the bony end-plate to be in a state of

compression axially. This component showed a tendancy to

relax with time, with the reduction on the order of 9%

overall.

In the trabecular bone region, the stresses (Figs

4.22-4.25) remained virtually constant. it should be noted

that the final data point on these plats near r-2.40 cm is

in the region of the vertebral body which is composed of

cor'tical bone. In that region (as was the case with the

bony end-plate) the stresses did vary with time.
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Figure 4.1 Initial Mesh Size
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Figure 4.7 Intermediate Mesh Sizes
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Figure 4.8 Intermediate Mesh Sizes



Figure 4.9 Final Mesh Size
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Figure 4.11a Undefarmed Shape t-0-

58



Figure 4.11b Deformed Shape t-O+
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Figure 4.11c Deformed Shape t-80 min.
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Figure 4.I1d Deformed Shape t-160 mini.
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CHAPTER 5

CONCLUSIONS

Whereas attempts to model the viscoelastic creep of the

human intervertebral joint as a one-dimensional viscoelastic

structure have proven successful in portraying the

externally observed response, they have fallen short of

showing the internal response. Furthermore, when attempts

are made to apply the viscoelastic parameters derived from

such a model to a more complex two-dimensional model, even

the external response is not accurately reproduced.

This observation led the author to deviate from the use

of the one-dimensionally derived parameters and seek to

derive constants which would more accurately reproduce the

externally observed response. In doing so, it was found

that the material constants based on the axi-symmetric model

of the joint varied substantially from those derived from

the one-dimensional model. These significant variations led

to the conclusion that for purposes of stress analysis, the
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one-dimensional parameters are inadequate. Stated

alternatively, the intervertebral joint is not accurately

modelled as a nonhomogeneous viscoelastic axial rod.

As was pointed out in the preceeding chapter, the

viscoelastic creep of the human intervertebral disc causes

some significant stress redistributions throughout the

entire intervertebral joint. These changes were most

pronounced in the disc-bone interface region , where the

greatest activity was noted. These redistributions led to

the conclusion that time is an important variable which

should be included when modelling the human intervertebral

joint.
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APPENDIX A

In the following sections, the basic concepts and

equations used in the finite element analysare of elastic

materials is briefly reviewed. These equations provide

background for the viscoelastic finite element computer

program developed. The final section serves to show the

incremental nature of the viscoelastic problem and ties the

viscoelastic constitutive relation into the elastic solution

method.

The basic philosophy of the finite element method (25)

is that an approximate solution to a complicated problem can

be obtained by subdividing the region of interest into a

finite number of discrete elements and then choosing

appropriate relatively simple functions to represent the

solution within each element. These functions are simple

compared to the so-called "exact" solutions which account

for the entire region of interest. In this section the

equations associated with representing an axisymmetric body

as a finite number of elements are presented. The

displacements in each element are expressed as a simple

polynomial and the equations relating displacements to

applied loading are given.

DISPLACEMENT MODEL

The displacement function used in the displacement
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formulation is generally selected as a polynomial. The

polynomial expression allows for simple differentiation and

integration. Also, as the element size becomes small, the

polynomial expression permits a simple approximation to the

exact solution. A polynomial of infinite order corresponds

to an exact solution. However, for practical purposes the

polynomial must be truncated to a finite number of terms.

Thus, the number of elements in a structure must be large

enough so that the displacement function for each element

closely approximates the exact displacements in that

particular region.

In any numerical method, the solution should converge

to the exact solution as the size of the elements become

small. For the displacement formulation, it has been shown

that under certain conditions the solution provides a lower

bound to the exact displacements (25). To assure this

convergence certain conditions must be satisfied. First,

the displacement function must be chosen so that rigid body

displacements do not cause straining of the element.

Second, the function must also be chosen so that a constant

state of strain is obtained as the element size approaches

zero. The simplest polynomial function which satisfies

these two requirements and also maintains displacement

continuity between adjacent elements is the linear

displacement function.

DISPLACEMENT FUNCTION
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Figure A-i shows a typical triangular element, m, with

nodes i,j,k numbered in a counter clockwise direction. The

linear displacement function which defines the displacements

within the element is given by

(A-1)v -aL + -t r + q

where the constants are determined from the six nodal

displacements and nodal coordinates as

-A L& (A-2)

and

2Am, cc ejC._ V

where is the in-plane area of the element. The

coefficients a , , and q are given by

- (A-4)

= - (A-5)

r (A-6)
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where r and z are coordinates of the nodal points. The

other coefficients for the subscripts "j" and "k" are

obtained by cyclic permutation of the subscripts i, J, and

k.
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tz.V.

Figure A-1 Typical Triangular Element
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ELEMENT STRAIN FOR AN AXI-SYMMETRIC GEOMETRY

The total strains at any point within an element are

defined in terms of the displacement derivatives as

A , /r (A-7)

From eqs A-i to A-6, the total strains are written in terms

of the nodal displacements and coordinates as

where ji4L is the generalized nodal displacement and

o o , (A-9)
2A bo i C .6 e __ WA-9

where

= 4 /+ I C /r

ELASTIC ANALYSIS

For linear elastic and isotropic materials, the

relationship between stresses , strains f and any

initial strains f*ois given by

h a pA-10)

where C ]is the elastic material property matrix. The
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matrix I D] for axisymmetric conditions is given by

/1-o 0
"A-v V/s 0)O+C .v(I-2.v) I j

L , __ _

METHOD of SOLUTION

The equation which governs the elastic response of a

discretized structure can be derived from the principle of

virtual work (25) and is given by

where I K] is the elastic stiffness matrix of the structure

P&P9i the generalized displacement vector, M is the

external applied load vector, and J is the force vector

due to the presence of initial strain.

The coefficients of the elastic stiffness matrix are

obtained from

LK MZ 27T I a ES 0E] E15]i o- d (A-13)

where the integration is taken over the volume of each

element and the summation is over all elements in the

structure. The nodal forces due to initial strains are

given by

C 191'r87D (A-14)
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Since the integrals contain terms which are dependant

on the radius r, an efficient method of integration must be

chosen. The simplest approximation procedure is to evaluate

[B] for a centroidal point

= (e +" -(A-16)

In this case, if ($1 is defined to be [j] evaluated at the

centroidal point

PIZT

2vzr4 mE[81 LDJI~ . r (A-18)

In the elastic problem, the unknowns are the

displacements tal. The solution for these unknowns is found

by the inversion of Eqn A-12.

VISCOELASTIC PROBLEMS

As discussed in Chapter 3, the displacements, strains,

88



and stresses are seen to be time dependant in viscoelastic

problems. It is also seen that the constitutive relation

for a three-parameter solid can be integrated in time to

give Eqn 2-50 which repeated here is

& LCJL -P3 q CEe~j (A-19)

where [A) is given by

)/e 0(A-20)
I 01L!

I -

If A is treated as an incremental initial strain

J,£3 then it is readily seen that the viscoelastic

constitutive relation enters into the governing equation

(A-12) only in the residual force term JQJ. Then, as time

is incremented by imposing a small At, the residual force

term is seen to vary with time. This means that Eqn A-12

must be solved at each time step for the values of

These values of a nd .4are then substituted in to

Eqn A-19 , time is incremented, and the process continues

until a maximum time is reached. Figure A-2 presents a flow

chart of the procedure.
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APPENDIX B

The application of the general correspondence principle

to obtain the viscoelastic solution to the thick-walled

cylinder problem proceeds as follows:

10,,

Applying the assumption that the volume change is purely

elastic, while the distortion is a three-parameter solid,

leads to the following operators:

II
~K I ;;;"7*I4 (B-2)

Substituting into Eqn B-I yields

r r +i. (B-3)

(B-5)
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- L
= ~pi~-~. r ~ r-~ + (B-6)

Irr

li, 2. 4- (B-7)

At this point, the method of load application must be

considered. If the load is applied instantaneously, the

value of becomes p-p/A . Substituting and rearranging

leads to

UP41 i(B-8)" .. rit j Ir

The equation in this form is conveniently inverted to the

time domain by the following expressions:

_ ~e - B -9)

a4- A-

and

92(B-1)

so
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El + r

where _____ =
(o-ii

To obtain the value of , consider the transformed

equation

Substituting in the polynomial operators from Eqn B-2 yields

_ _ 3 k, -- U (B-13)

_ _ i 0__-_ +_,_" (B-14)

Again assuming instantaneous loading leads to

4T.__ 1- +_____ (B-15)

Using the same inversion expressions gives

J + (B-16)

vhere, again C7(41

93.f,
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